Publisher: Courier Corporation

ISBN: 0486791661

Pages: 1152

Year: 2014-02-17

View: 806

Read: 500

"Strongly recommended" by the American Journal of Physics, this volume serves as a text for advanced undergraduates and graduate students of physics as well as a reference for professionals. Clear in its presentation and scrupulous in its attention to detail, the treatment originally appeared in a two-volume French edition. This convenient single-volume translation begins with formalism and its interpretation, starting with the origins of quantum theory and examinations of matter waves and the Schrödinger equation, one-dimensional quantized systems, the uncertainty relations, and the mathematical framework and physical content of formalism. The second half opens with an exploration of symmetries and invariance, including a consideration of angular momentum, identical particles and the Pauli exclusion principle, invariance and conservation laws, and time reversal. Methods of approximation include those involving stationary perturbations, the equation of motion, variational method, and collision theory. The final chapters review the elements of relativistic quantum mechanics, and each of the two volumes concludes with useful appendixes.

Publisher: Springer Verlag

ISBN:

Pages: 287

Year: 1971

View: 1135

Read: 186

Publisher:

ISBN: 2705658343

Pages: 623

Year: 1977

View: 1153

Read: 564

Publisher: Springer Science & Business Media

ISBN: 3540288058

Pages: 511

Year: 2006-05-16

View: 1057

Read: 1029

Gives a fresh and modern approach to the field. It is a textbook on the principles of the theory, its mathematical framework and its first applications. It constantly refers to modern and practical developments, tunneling microscopy, quantum information, Bell inequalities, quantum cryptography, Bose-Einstein condensation and quantum astrophysics. The book also contains 92 exercises with their solutions.

Publisher: Springer

ISBN: 3540734732

Pages: 455

Year: 2007-11-30

View: 1004

Read: 1290

The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the quantum theory. This multi-authored book, written as an introductory guide for newcomers to the subject, as well as a useful source of information for the expert, covers many of the open questions. The book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory.

Publisher: World Scientific

ISBN: 9812810110

Pages: 915

Year: 2001

View: 526

Read: 317

This book analyzes the intricate logical process through which the quantum theory was developed, and shows that the quantum mechanics thus established is governed by stereo-structural logic . The method of analysis is based on Mituo Taketani''s three-stage theory of scientific cognition, which was presented and developed in close connection with Yukawa''s theory of the meson. According to the three-stage theory, scientific cognition proceeds through a series of coiling turns of the phenomenological, substantialistic and essentialistic stages. The old quantum mechanics is shown to be in a substantialistic stage, followed by the quantum mechanics in the corresponding essentialistic stage. Sample Chapter(s). Chapter 1.1: Themodynamical Investigation of Black Body Radiation (206 KB). Chapter 1.2: Atomistic Investigations of Black Body Radiation (257 KB). Chapter 1.3: Einstein''s Light Quantum (261 KB). Chapter 1.4: The Light Quantum and the Theory of Relativity (158 KB). Chapter 1.1: Diffculties seen from Statistical Heat Theory (281 KB). Chapter 1.2: Molecular Theoretical Significance of the Planck Theory (236 KB). Chapter 1.3: Conflict between the Wave and Particle Natures (235 KB). Chapter 1.1: Heisenbergs Quantum Condition (307 KB). Chapter 1.2: Born-Jordan''s Formulation with Matrices (361 KB). Chapter 1.3: Dirac''s Formulation by Quantum Algebra (299 KB). Chapter 1.4: Attempts at the Interpretation of Matrix Mechanics (272 KB). Contents: Volume I: Quantum of Radiation; The Formation of Atomic Models; Volume II: Difficulties in Radiation Theory; The Quantum of Action and Atomic Models; The Quantum Condition, Transition Probability and Correspondence Principle; Theory of Atomic Structure and Spin of Electron; The Interconnection of Wave- and Particle-Natures; Volume III: The Proposal and Formulation of Matrix Mechanics; From the Proposal of Wave Mechanics to Quantum Mechanics; The Establishment of Quantum Mechanics; The Logic of Quantum Mechanics. Readership: Undergraduates and researchers in quantum and theoretical physics.

Publisher: CRC Press

ISBN: 0429980078

Pages: 324

Year: 2018-07-03

View: 956

Read: 832

When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

Publisher: Basic Books

ISBN: 0465040853

Pages: 1200

Year: 2015-09-29

View: 551

Read: 564

“The whole thing was basically an experiment,” Richard Feynman said late in his career, looking back on the origins of his lectures. The experiment turned out to be hugely successful, spawning publications that have remained definitive and introductory to physics for decades. Ranging from the basic principles of Newtonian physics through such formidable theories as general relativity and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight. Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman.

Publisher: John Wiley & Sons

ISBN: 3527409793

Pages: 664

Year: 2011-01-11

View: 1260

Read: 1321

This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schrodinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, "Further reading" is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text.

Publisher: Incomprehensible Books

ISBN: 0957389469

Pages: 274

Year: 2017-04-01

View: 1228

Read: 375

A clear and enjoyable guide to the mathematics of relativity To really understand relativity – one of the cornerstones of modern physics – you have to get to grips with the mathematics. This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. Understand even the basics of Einstein's amazing theory and the world will never seem the same again. March 2017. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.

Publisher: iUniverse

ISBN: 0595336906

Pages: 344

Year: 2004

View: 909

Read: 533

The author does not want a book description on the back cover.

Publisher:

ISBN: 2705658335

Pages: 1524

Year: 1977

View: 1054

Read: 1317

Publisher: University Science Books

ISBN: 1891389130

Pages: 476

Year: 2000-01-01

View: 997

Read: 1319

This text allows lecturers to involve their undergraduates in the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound.

Publisher: Cambridge University Press

ISBN: 052116849X

Pages: 336

Year: 2010-12-09

View: 753

Read: 931

This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.

Publisher: Wiley-VCH

ISBN: 3527410570

Pages: 1182

Year: 2010-12-28

View: 1221

Read: 442

This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schr?dinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, "Further reading" is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text.